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Regulated movement of stem cells is critical for organogenesis during development and for homeo-
stasis and repair in adulthood. Here we analyze the biological significance and molecular mecha-
nisms underlying stem cell trafficking in the generation of the germline, and the generation and
regeneration of blood and muscle. Comparison across organisms and lineages reveals remarkable
conservation as well as specialization in homing and migration mechanisms used by mature leuko-
cytes, adult and fetal stem cells, and cancer stem cells. In vivo trafficking underpins the successful
therapeutic application of hematopoietic stem cells for bone-marrow transplant, and further eluci-
dation of homing and migration pathways in other systems will enable broader application of stem
cells for targeted cell therapy and drug delivery.
Stem cells are unspecialized precursor cells that are uniquely

capable of both differentiation, to produce mature daughter cells

that carry out particular tissue functions, and self-renewal, to sus-

tain and replenish the stem cell pool. Stem cells play a critical role

in the establishment of embryonic tissues during development

and in some cases are retained into adulthood, where they sup-

port ongoing replacement of short-lived mature effector cells

as well as injury-induced regeneration of diseased or damaged

daughter cells. Regarding hematopoietic stem cells (HSCs), re-

cent evidence suggests that these cells may also participate di-

rectly in immune surveillance and defense against invading

pathogens (Massberg et al., 2007).

Implicit in the generative, regenerative, and immunological

functions of tissue-specific stem cells is the proper localization

of these precursors, which is essential to build organs and tis-

sues during development and to foster localized tissue defense

and repair after damage. New studies provide increasing sup-

port for the notion that stem cells in vivo require inputs from par-

ticular defined microenvironments, or ‘‘niches,’’ which support

their unique stem cell functions (see Review by S.J. Morrison

and A.C. Spradling, page 598 of this issue). Long-term mainte-

nance of stem cells, therefore, requires their migration to and en-

graftment within supportive stem cell niches.

Beyond the essential role of micro- and macroanatomical po-

sitioning in normal stem cell activity, it is becoming increasingly

clear that achieving targeted trafficking of stem cells will be

critical for effective tissue regeneration from transplanted cells

in the clinic. In addition, with the ability to manipulate stem cell

homing and migration, these cells become potential vectors for

in vivo delivery of therapeutic genes or drugs. Finally, with our
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new view of many cancers as stem cell-maintained diseases of

dysregulated organogenesis (reviewed in Dalerba et al., 2007),

understanding the similarities and differences in the homing

and migration of malignant cancer stem cells, as compared to

their normal tissue counterparts, takes on new import for clarify-

ing the molecular events supporting tumor progression and

metastasis.

Here, we take a broad view of stem cell migration and homing

in normal development, tissue regeneration, and disease, to

identify conserved and distinct molecular mechanisms and bio-

logical themes governing the movement of stem cells in the

body. We focus on three different stem cell types—primordial

germ cells (PGCs), skeletal muscle satellite cells, and hemato-

poietic stem cells (HSCs)—and find new insights by comparing

their trafficking in the embryo and adult. This analysis is informed

by ground-breaking work in the cell-adhesion and -trafficking

fields, which over several decades have elucidated discrete

steps that support the homing and migration of immune and

stromal cell types in the body. Strikingly similar mechanisms ap-

pear to govern the in vivo migration of stem cells, arguing that

application of analogous principles to the analysis of stem cell

homing will uncover the key steps in this process and provide

new information that can be used therapeutically to target these

cells for regenerative medicine and anticancer therapy.

Migration and Homing
Stem cells in vivo participate in organogenesis, normal cell turn-

over, and repair from catastrophic injury. In each of these set-

tings, appropriate stem cell function often requires stem cell traf-

ficking, defined as the oriented or directed movement of a cell
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towards a particular anatomic destination. For clarity, we distin-

guish in this review two principal modes of stem cell trafficking—

homing and interstitial migration.

We define homing as a process whereby stem cells are dissem-

inated throughout the body by the flowing blood until they recog-

nize and interact with microvascular endothelial cells in a partic-

ular target organ. Homing is best understood for HSCs, but this

process may apply also to some other stem cell types—for exam-

ple, therapeutically infused mesenchymal stem cells (Pittenger

and Martin, 2004) and metastasizing cancer stem cells (reviewed

in Balkwill, 2004; Burger and Kipps, 2006). The intravascular dis-

semination of homing stem cells is essentially passive, although

homing is always preceded and followed by an active migratory

phase during which cells must navigate the extravascular com-

partment to access the blood from their point of origin and to

reach their final destination in a distant target organ. A special

requirement of blood-borne stem cells is that they must have

the means to recognize tissue-specific microvascular features

in target organs, and once this recognition has occurred they

must adhere to the vessel wall with sufficient strength to over-

come the considerable shear stress exerted by the flowing blood.

The extravasation of blood-circulating stem cells into extravas-

cular tissues appears to invoke a multistep adhesion cascade

similar to that initially described in the homing of mature blood

leukocytes.

The second mode of trafficking, interstitial migration, requires

that stem cells recognize and obey extravascular guidance cues.

In contrast to homing, this mode of trafficking requires active

ameboid movement and can occur independent of blood flow.

The developmentally timed, trans-tissue migration of primordial

germ cells (PGCs) and of somite-derived skeletal muscle pre-

cursor cells are classic examples of interstitially migrating stem

cells.

Multistep Adhesion Cascades

Trafficking (migration) via homing appears to involve three (or

more) consecutive steps that rely on distinct receptor-ligand

pathways: (1) tethering and rolling, mediated by primary adhe-

sion molecules (selectins or a4-integrins) with fast binding kinet-

ics and high tensile strength but short bond lifetime; (2) a chemo-

tactic/activating stimulus provided by soluble or surface-bound

chemoattractants, which signal mostly through Gai-coupled

(i.e., pertussis toxin-sensitive) seven transmembrane domain

receptors; and (3) sticking mediated by secondary adhesion

molecules, mostly integrins (ß2 or a4) that interact with endothe-

lial ligands of the immunoglobulin superfamily (IgSF). These

sequential and molecularly distinct steps were originally defined

in early studies of the recruitment of circulating leukocytes from

blood to tissues, where each stage is characterized by distinct

biophysical requirements and the ordered involvement of dis-

crete molecular entities (Springer, 1994). For example, neutrophil

extravasation (movement out of the blood and into the tissues) in

postcapillary venules of inflamed tissues requires first a selectin-

mediated step that allows flowing cells to marginate and roll

along the vessel wall. This rolling must be followed by a chemo-

attractant stimulus that induces rapid activation of ß2-integrins,

which mediate firm arrest (von Andrian et al., 1991). Genetic

defects in either selectin- or integrin-mediated adhesion steps

results in leukocyte-adhesion deficiency (LAD) syndrome and
severe recurrent bacterial infections. Multistep adhesion cas-

cades also operate during lymphocyte homing to lymph nodes

(LNs), Peyer’s patches, and other organs (von Andrian and

Mackay, 2000) and during seeding of the thymus by bone

marrow-derived lymphoid progenitors (Scimone et al., 2006).

A similar multistep adhesion cascade also mediates hematopoi-

etic stem and progenitor cell homing to mouse bone marrow

(BM), and the molecular effectors of this process are beginning

to be identified (Mazo et al., 1998, 2002).

Stem Cell Trafficking during Development
Stem cells comprise the building blocks of many tissues and

organs formed during embryogenesis. The specification and

morphogenesis of these tissues hinges upon proper localization

of stem cells or their precursors, which in many cases mandates

long-distance homing or interstitial migration in the embryo. Here

we compare the developmentally timed trafficking of three

distinct itinerant stem cells across multiple model organisms.

Stem cells of the germline and skeletal muscle, and a subset of

early HSCs, migrate interstitially through many different embry-

onic tissues. In contrast, late embryonic and fetal HSCs rely on

homing as a primary mode of dispersion throughout the body.

These comparisons reveal a striking conservation of stem cell

movement throughout evolution and a remarkable overlap in

the molecular effectors of interstitial migration and homing.

Germ Cells

The male and female gametes that carry genetic material to the

next generation arise from a transient stem cell population in the

embryo called primordial germ cells (PGCs). A small number of

these founders originate early in development, before distinct

germ layers or organs exist, and then traverse many different tis-

sues in the growing embryo while proliferating, presumably by

symmetric divisions (Anderson et al., 2000; Molyneaux et al.,

2001). After reaching the gonad primordia, bipotential PGCs un-

dergo genome-wide imprint erasure and commence sex-specfic

differentiation, which terminates in the production of oocytes or

spermatozoa during adult life (reviewed in McLaren, 2003). PGC

migration is essential to development of the germ lineage, as

evidenced by its ubiquity across multicellular organisms (see

below).

In the fruit fly Drosophila melanogaster, germ cells (referred to

as pole cells) are the first cells to be formed and are established

at the posterior pole of the embryo. The morphogenetic move-

ments of gastrulation carry the PGCs from the extreme periphery

into the hindgut. PGCs subsequently migrate through the hind-

gut epithelium, and once in the surrounding mesoderm, resolve

into two bilateral clusters that move toward each developing go-

nad. After arriving at the gonad, they differentiate according to

the male or female program, which is specified by the soma (re-

viewed in Kunwar et al., 2006). Mouse PGCs travel a surprisingly

similar route, though their origins differ (see Figure 1A). Anointed

from the pluripotent epiblast by a series of signals around embry-

onic day 7 (E7), murine PGCs traverse the epicenter of gastrula-

tion, the primitive steak, to the extraembryonic region (Anderson

et al., 2000). This peripheral positioning of PGCs is reminiscent of

fly pole cells. The exiled PGCs return to the embryo following

gastrulation and at the nascent endoderm become incorporated

into the hindgut (Molyneaux et al., 2001). Similar to Drosophila,
Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc. 613



mouse PGCs emerge from the gut, migrate into the dorsal

mesentery, and bifurcate as they approach the gonads, finally

arriving around day 11.5 of gestation. By contrast, zebrafish

PGCs travel a less linear route to the gonad (Figure 1D). They be-

gin not as a single cohort, but as four randomly oriented clusters

that converge on two regions of mesoderm during early gastru-

lation, then aggregate on either side of the first somites (Yoon

et al., 1997). Zebrafish PGC migration concludes similarly to fly

and mouse, with directed movements through mesoderm to

colonize the gonads (Raz, 2003).

Although the migration routes differ between these three phy-

logenetically distant model organisms, the interstitial migration of

PGCs in all cases proceeds in discrete steps and targets succes-

sive anatomical landmarks. Each step in PGC migration involves

a specific kind of movement—from squeezing between epithelia,

to drifting through mesentery, to passive transit within the hind-

gut—and PGCs in various organisms progress through each mi-

gration step vacillating from polarized ameboid cells, to rounded

individual cells, to aggregated cells (Blaser et al., 2005; Godin
614 Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc.
Figure 1. Migration of Germ Cells and

Blood Cells during Development

(A) Primordial germ cell (PGC) precursors in the

mouse epiblast move through the primitive streak,

become committed PGCs in the allantois (yellow

denotes extraembryonic tissues), then migrate

into the developing hindgut. PGCs then emerge

into the dorsal mesentery and colonize the go-

nadal ridges, which develop into the gonad.

(B) Mouse HSC progenitors and primitive blood

cells also migrate through the primitive streak to

the yolk sac; HSCs arise later in the placenta

and aorta-gonad-mesonephros region (AGM)

and then home through the embryonic and extra-

embryonic vessels to the fetal liver before coloniz-

ing the bone marrow.

(C) Relative positions of PGCs (blue) and HSCs

(red) in the mouse embryo at E10.5.

(D) Zebrafish PGCs are specified as four clusters

in the deep cell layer of the pregastrula. They mi-

grate into two regions of mesoderm before sepa-

rating into clusters flanking the somites, finally

moving into the gonads.

(E) Hematopoiesis in zebrafish begins later as

three transient populations: macrophages in the

cephalic mesoderm (which enter circulation via

the yolk sac), erythrocytes (which arise in the ven-

tral mesoderm), and erythromyeloid progenitors

(which arise in the posterior blood islands).

HSCs are specified in the AGM and migrate to

the thymus and the pronephros, which, like the

bone marrow in mammals, is the main site of adult

hematopoiesis.

(F) PGCs, HSCs, and blood progenitors in the ze-

brafish at �24–28 hours postfertilization.

et al., 1990; Molyneaux et al., 2001). Is

this morphological progression simply

a perfunctory response to the obstacle

course that lies between the birthplace

of PGCs and their arrival at the gonad,
or does their meandering provide factors necessary for PGC de-

velopment and function? The answer still is not clear: mouse

PGCs progress through these morphological changes in vitro,

suggesting that at least some of their behavior is autonomous

(Godin et al., 1990), but heterochronic (interstage) transplants

in fish and flies suggest that the niche plays an instructive role

in their development (Blaser et al., 2005; Jaglarz and Howard,

1994). What is perhaps even more puzzling than the remarkable

length and complexity of the PGC pilgrimage to the gonad is their

disparate origin from the gonad. Would it not be more efficient to

generate the germ lineage where (and when) it is needed, rather

than conveying PGCs throughout the embryo and risking losing

them along the way? A surprising realization upon comparing

PGC development across different species is that the route

from PGC inception to arrival in the gonad seems to be perpetu-

ally changing; yet, perhaps such variation in the specific paths

of PGC migration belies a conserved requirement for migration

itself. Furthermore, when comparing PGC migration to that of

other developing stem cells, a remarkable theme emerges in



which a small number of founder cells expands while transiting

through successive anatomic sites. These observations suggest

that for many stem cells migration is more than just practical and

represents an essential aspect of their development and perhaps

even maintenance.

Blood

In contrast to the simple bipotentiality of PGCs, which generate

either oocytes or sperm, hematopoietic stem cells (HSCs) give

rise to many different types of mature blood cells through

a branching series of progenitors with increasingly restricted

potential (see Review by S.H. Orkin and L.I. Zon, page 631 of

this issue). Furthermore, unlike the leisurely germ cell whose ser-

vices will not be required until adulthood, HSCs must from the

start balance the immediate physiological demands of the grow-

ing embryo with the need to produce sufficient reserves for sus-

taining hematopoiesis throughout life. Moreover, whereas PGCs

navigate predominantly along interstitial routes, HSCs often

home to distant sites by making use of passive transport via

the circulating blood. Nonetheless, the development and move-

ment of blood and germ stem cells in the embryo share surpris-

ing similarities, beginning with their early specification, to their

sojourn to extraembryonic tissues in mammals, to their serial

stopovers in distinct embryonic sites. In addition, the cellular

phenotype of HSCs, like PGCs, is not static during development,

but changes to reflect different kinds of migration and different

hematopoietic requirements.

Although the earliest studies on blood development were car-

ried out in birds and amphibians, the mouse ultimately became

the main model organism in this field. Surprisingly, it remains un-

clear even today precisely when and where the very first HSCs

are established. Mouse hematopoiesis first becomes evident in

the yolk sac just after gastrulation at E7.5 as a band of special-

ized nucleated erythrocytes called blood islands (Figure 1B)

(Moore and Metcalf, 1970). Grafting studies into newborn recip-

ients detect the first HSCs at E9.0 in the yolk sac and para-aortic

splanchnopleurae, a mesoderm-derived tissue that becomes

the aorta-gonad-mesonephros (AGM) region around E10.5

(Yoder et al., 1997). However, earlier commitment to the HSC lin-

eage has been implied by genetic marking of the first Runx1+

cells in the yolk sac blood islands (Samokhvalov et al., 2007)

and by successful adult engraftment of E8.5 splanchnopleural

HSCs after a culture period (Medvinsky and Dzierzak, 1996).

In addition to the AGM and yolk sac, the placenta is the most

recently appreciated and prolific source of HSCs in the develop-

ing mouse embryo (Gekas et al., 2005; Ottersbach and Dzierzak,

2005). It is possible that developing hematopoietic precursors

emerging from the primitive streak remain in the allantois, which

fuses with the chorion and contributes to the umbilical cord and

placenta; alternatively, HSCs might arise de novo in the placenta

(Corbel et al., 2007). This second possibility has now been sup-

ported by a new study documenting the emergence of HSCs in

the placenta of embryos that lack blood circulation due to failure

to initiate a heartbeat (Rhodes et al., 2008).

At E11.5–12.5 of mouse development, a hematopoietic dias-

pora ensues, as HSCs abandon the yolk sac, AGM, and placenta

and home to the fetal liver (Johnson and Moore, 1975), which for

the next 5–6 days promotes both rapid HSC expansion and dif-

ferentiation to pools of various blood progenitors. Just 1–2 days
before birth, stem and progenitor cells begin to seed the bone

marrow (Christensen et al., 2004). Soon after their arrival at this

site of continued adult hematopoiesis, fetal mouse HSCs curb

their proliferative activities and enter a state of relative quies-

cence (Bowie et al., 2006). Yet, HSC migration is hardly finished.

Indeed, HSC migration persists throughout adulthood with a con-

tinuous recirculation throughout the blood, tissues, and lym-

phatic system (Abkowitz et al., 2003; Massberg et al., 2007;

Wright et al., 2001).

The zebrafish has only recently become a standard model for

studying hematopoiesis and HSC development. Due in part to

differing requirements associated with external development,

the sites of early blood formation in zebrafish are quite distinct

from those in the mouse. Multipotent HSCs are preceded by

three separate populations of precursors with limited potential

and self-renewal capacity (Figure 1E): a population of primitive

macrophages arises from the cephalic mesoderm (Herbomel

et al., 1999), erythrocytes develop in migrating strips of ventral

mesoderm that converge into the cardinal vein (Al-Adhami and

Kunz, 1977), and progenitors with erythromyeloid potential orig-

inate in the posterior blood islands (PBI) (Bertrand et al., 2007). A

relevant evolutionary question is whether these evanescent

blood lineages existed prior to HSCs, or if their evolution fol-

lowed that of HSCs to satisfy increased metabolic or immune re-

quirements of the growing embryo. The first HSCs were recently

prospectively isolated from the zebrafish AGM equivalent. These

cells home through the vasculature to the thymus and via the

pronephric tubules to the head kidney, which is the site of adult

hematopoiesis equivalent to the bone marrow in mice (D. Traver,

personal communication). Thus, in spite of their evolutionary dis-

tance, the origination and migration of blood-forming stem cells

are remarkably similar between fish and mammals.

Considered in both rodent and teleost model systems, HSCs

migrate during development for comparatively less abstract rea-

sons than PGCs; practically speaking, blood cells are required

by the embryo before the formation of adult stem cell niches (lo-

cated predominantly in the bone marrow in mammals). As we

begin to attribute distinctive niche functions to particular HSC

stopovers throughout embryogenesis, such as rapid expansion

in the mammalian fetal liver and controlled quiescence in the

bone marrow in mammals or head kidney in fish, the question re-

mains whether the earliest HSCs are specified more than once

and in several locations. Does this multicentered approach re-

flect phylogeny or a demand for production volume? Or, is there

an important functional heterogeneity between HSCs derived

from different sites of de novo hematopoiesis? Comparative

studies of blood development in multiple organisms will help to

answer this question, and such studies will certainly benefit

from recently acquired capabilities for prolonged live imaging

of zebrafish embryos, which marry lineage tracing and genetics

to directly monitor HSC origins and migration.

Skeletal Muscle

Skeletal muscle is a highly specialized tissue comprised of

nondividing multinucleated myofibers that contract in concert

to generate force (Figure 3). The ontogeny and migration of skel-

etal muscle precursors is highly conserved in vertebrates, and

our current understanding is a synthesis of studies in amphibian,

chick, mouse, and zebrafish. During development, cells that
Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc. 615



ultimately give rise to skeletal muscle originate from somites,

segmented parcels of paraxial mesoderm that flank the neural

tube (Buckingham et al., 2003). These precursors to adult skele-

tal muscle migrate great distances to multiple sites of embryonic

myogenesis, including the limb buds and brachial arches, where

differentiation ensues in late fetal stages. Myogenic differentia-

tion in these locations is accompanied by expression of the myo-

genic transcription factors Myf5 and MyoD and the fusion of cell

bodies (reviewed in Buckingham et al., 2003; Hawke and Garry,

2001). After this initial establishment of the muscle, the primary

myogenic requirement shifts from morphogenesis during devel-

opment, to growth and repair in postnatal life.

To meet the demands of postnatal life, fully developed muscle

retains a reservoir of cells committed to muscle regeneration.

First identified ultrastructurally, these ‘‘satellitecells’’ were named

for their peripheral location beneath the basal lamina of the myo-

fiber (Mauro, 1961). Satellite cells persist from late embryogene-

sis, to neonatal stages and through adulthood, although their

numbers decline after birth (Hawke and Garry, 2001). In the adult,

transplantation studies demonstrate both differentiation and

self-renewal capacities within the satellite cell pool, supporting

their designation as a tissue-specific stem cell population (Collins

et al., 2005; Montarras et al., 2005).

Recently, the developmental predecessors to muscle satellite

cells were identified in the late fetus based on their lack of differ-

entiation markers and continued expression of the paired box

transcription factors Pax3 and Pax7. Grafting experiments in

chick and genetic marking in mice suggest a common origin in

the dermomyotome for satellite cells and skeletal muscle (Gros

et al., 2005; Relaix et al., 2005). Satellite cell precursors, which

seed embryonic myogenesis and give rise to the postnatal satel-

lite cell pool, delaminate (split off) from the somites early in em-

bryogenesis, and migrate large distances to multiple sites of

myogenesis within the developing limbs and trunk (reviewed in

Buckingham et al., 2003). But precisely when is the fetal satellite

cell lineage established, and how is the specialized subset of this

pool set aside to give rise to adult self-renewing satellite cells?

Although the answers to these questions remain uncertain, it is

clear that targeted migration of both satellite cells and their pre-

cursors during development is critical for the morphogenesis

of muscle and that the mechanisms involved in this process

overlap in many ways with stem cell trafficking events in the

adult.
Trafficking Mechanisms in Development
Cell-Cell Adhesion and Deadhesion

The regulation of adhesion between cells is critical for the transi-

tion of stem cells between different tissues during development.

In most cases, the breaking of existing junctions between cells,

or deadhesion, represents the earliest step in migration. For

muscle precursor cells in the somites, the onset of migration

requires dissociation of Pax3-expressing precursors from the

dorsal epithelial layer of the somite, or dermomyotome (Bucking-

ham et al., 2003). Pax3 transcriptionally regulates the tyrosine

kinase receptor c-Met (Epstein et al., 1996), which binds to

secreted hepatocyte growth factor. Regional concentrations of

hepatocyte growth factor in the developing limbs and brachial
616 Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc.
arches engage c-Met and induce the dispersion of satellite cell

precursors along routes of myogenesis (Bladt et al., 1995).

Such epithelial-to-mesenchymal transitions (EMT) are a wide-

spread developmental strategy for generating new cell lineages;

the associated breakdown of apical junctions permits free move-

ment of defecting cells relative to the uniform epithelial sheet

(reviewed in Shook and Keller, 2003). Zebrafish PGC migration

similarly begins with EMT, sparked by the expression of dead

end, a germline-specific RNA-binding protein. In dome stage

embryos, dead end downregulates the adhesion molecule

E-cadherin in the 4 PGC clusters in the deep epithelial layer

and enables their migration (Shimizu et al., 2005).

Migrating PGCs passing through the hindgut epithelium avoid

adhesive interactions similar to mesenchymal cells undergoing

EMT. PGCs in mice maintain low levels of E-cadherin compared

to the surrounding gut epithelial cells, which may enhance their

motility. Curiously, these cells upregulate E-cadherin upon egress

from the gut to the surrounding dorsal mesentery (see Figure 1C),

perhaps to facilitate adhesion to one another (Bendel-Stenzel

et al., 2000). The role for cadherins in transepithelial migration of

fly PGCs through the midgut is comparatively less clear, as it is

expressed but not absolutely required (Kunwar et al., 2003).

Mouse HSCs and their precursors in the yolk sac, AGM, and

placenta robustly express CD144, also known as vascular endo-

thelial (VE) cadherin, and CD144 levels fall as they transit to the

fetal liver (Fraser et al., 2002; Taoudi et al., 2005). Homotypic as-

sociation through VE-cadherins on endothelial cells is essential

for adherens junctions and regulates vascular permeability (Cor-

ada et al., 1999). The function of VE-cadherins in embryonic and

fetal HSCs is not clear, although cadherins may be biologically

important for both trafficking and niche interactions unique to

prenatal HSCs (Taoudi et al., 2005). These shared and unique

mechanisms of homotypic adhesion and deadhesion collectively

permit stem cells to migrate individually through sheets of cells.

Thus, a balance between engagement and aloofness from their

neighbors maintains stem cell dispersion, promotes movement,

and possibly helps to orient migrating stem cells in three-dimen-

sional space.

Movement

Integrin-mediated adhesion is important for the movement of

HSCs throughout mouse embryogenesis and in adulthood.

Distinct profiles of integrin heterodimer expression by HSCs in

different locations and at different developmental time points

suggests that integrins help to determine homing specificity. In

the mouse, CD41/integrin a2b is strongly expressed by prospec-

tive HSCs in the para-aortic splanchnopleure, placenta, and yolk

sac from E8.5 onward. Expression gradually decreases during

maturation and becomes undetectable in fetal liver HSCs by

E11.5–12.5 (reviewed in Mikkola and Orkin, 2006). The function

of CD41 is not known, although its expression in the earliest

zebrafish HSCs suggests a conserved role in hematopoietic

commitment or retention in the early niche (D. Traver, personal

communication). Nonetheless, blood-island, embryonic, and

adult hematopoiesis appear normal in mouse embryos lacking

CD41, perhaps belying its functional redundancy in mammals

(Francis et al., 2002). PGCs in the mouse express several integrin

subunits (a5, a6, b1, and b3), although only b1 appears to be es-

sential for migration. In mouse chimeras, b1-integrin-deficient



PGCs accumulate along their migration route, in the hindgut and

mesentery, and very few successfully populate the gonad (An-

derson et al., 1999). Taken together, these data indicate that

the combinatorial display of integrins on stem cell membranes

changes dynamically during development and has functional

consequences in the migration of multiple types of stem cells.

With the increasing feasibility of large-scale analyses, such as in-

travital and molecular imaging and transcriptional profiling on

small populations of cells, it will be possible to directly correlate

integrin expression on stem cells with their location and behav-

iors in various niches. Such approaches will define markers for

the isolation of stage-specific stem cells in development and

will clarify the functional role of particular integrin heterodimers

in migration.

Guidance Factors

Stem cells in the embryo rely on multiple navigation systems for

choreographing their discrete, successive movements. Genetic

screens in Drosophila suggest that phylogenetically ancient

guidance systems depend on lipids and factors requiring lipid

modification. Three independent mutants in the mevalonate

pathway disrupt PGC migration in fly embryos (Table 1) (re-

viewed in Kunwar et al., 2006). Mevalonate is involved in the syn-

thesis of cholesterol and isoprenoids, but the absence of genes

regulating cholesterol synthesis in Drosophila argues that the

protein prenylation pathway is required for PGC guidance.

Lipids may function more directly in fly PGC navigation by

activating the receptors Wunen1 and Wunen2, resulting in de-

flection of PGCs from midline tissues (Starz-Gaiano et al.,

2001; Zhang et al., 1997). Vertebrate Wunen homologs respond

to phospholipid substrates including sphingosine-1-phosphate

(S1P) and lysophosphatidic acid (LPA) (Renault et al., 2004 and

references therein). Both phospholipids and their receptors,

the S1P or Edg family, also regulate migration of mammalian

lymphocytes, endothelial cells, and cardiac progenitors (re-

viewed in Saba, 2004), although a role in vertebrate PGC guid-

ance has not been reported. These observations collectively

imply that lipid-mediated guidance has been reused by a variety

of migrating cell types in multiple organisms, although evolution

has not conserved these mechanisms in specific cell lineages.

Strategies for cellular repulsion and avoidance also appear to

have evolved multiple times and are invoked by many migrating

cells, including stem cells. For example, members of the ephrin

family of receptor tyrosine kinases and their membrane-bound

Eph ligands mediate axon guidance in the developing nervous

system, as well as neural crest, endothelial cell, and satellite

cell migration (reviewed in Davy and Soriano, 2005). In the chick

embryo, EphA4 enables satellite cell precursors delaminating

from the dermomyotome to avoid regions of EphA5 expression

in the limb mesoderm (Swartz et al., 2001). Ephrin signaling

between engaged ligand and receptor-bound cells produces

attractive as well as repulsive guidance cues, depending on

the family members (Davy and Soriano, 2005).

Similar attraction-repulsion responses arise from cellular

contact between early mouse PGCs; however, in this case the

molecular machinery involves a family of cell surface receptors

called IFITM/Mil/Fragilis. In the allantois of the mouse embryo,

PGC contenders may seal their commitment to the germline

via IFITM3 homotypic interactions (Saitou et al., 2002; Yoshimizu
et al., 2001). Interestingly, IFITM1 in neighboring somatic cells

furnishes a repulsive signal that drives PGCs from the allantois

back into the embryo, whereas IFITM3 expressed by PGCs is

sufficient for their localization in the hindgut endoderm (Tanaka

et al., 2005). IFITMs are not exclusive to the germ lineage, as

other family members are found on lymphocytes (i.e. Leu-13)

and play a role in lymphocyte homing by modulating L-selectin

levels (Frey et al., 1997). Further studies may reveal common

signaling pathways downstream of various IFITM receptors in

PGCs and lymphocytes.

An important and pleiotropic guidance factor for several stem

cells in the embryo is Kit ligand (KitL). KitL and its receptor, c-kit,

were first studied 60 years ago in spontaneous mouse mutants

called Steel (Sl) and White spotting (W), which had nearly identi-

cal dominant coat-color phenotypes. Homozygous Sl and W

mouse embryos exhibit a profound PGC deficit, severe anemia,

and failure of neural crest-derived melanocyte migration

(Fleischman, 1993; Mintz and Russell, 1957). In PGCs, the c-kit

tyrosine kinase receptor promotes both survival and chemotaxis

in response to KitL, which is expressed by somatic cells along

the PGC migration route in the hindgut and dorsal mesentery

(Matsui et al., 1990; Runyan et al., 2006).

Embryonic and adult mouse HSCs also maintain high levels of

c-kit on their surface from E9.0 onward (Yoder et al., 1997). In the

fetal liver, KitL exerts chemoattractive effects on HSCs, suggest-

ing that it helps to retain them there during the last days of ges-

tation (Christensen et al., 2004). Given the distribution of KitL

expression during mid-development in relation to PGC and

embryonic HSC migration routes (Matsui et al., 1990), it is sur-

prising that the respective stem cells do not confuse one

another’s signals. How do PGCs moving through KitL+ territory

in the dorsal mesentery avoid the dorsal aorta endothelium,

which also expresses high levels of KitL? Conversely, do HSCs

lining the dorsal aorta escape along PGC conduits in the sur-

rounding mesentery?

Similar signal crossing also could confound the responses of

different stem cells to the growth factor chemokine stromal-de-

rived factor 1 (SDF-1a/CXCL12). SDF-1a induces chemotaxis of

mouse fetal liver HSCs in synergy with KitL (Christensen et al.,

2004); mouse embryos deficient in SDF-1a or its G protein-cou-

pled receptor CXCR4 (also known as fusin) develop severe

hematopoietic defects (Ma et al., 1998; Nagasawa et al., 1996;

Zou et al., 1998). SDF-1a , like KitL, also provides a survival as

well as a guidance signal to mouse PGCs in their final movement

toward the gonadal ridges (Ara et al., 2003; Molyneaux et al.,

2003). PGCs apparently co-opted chemokine signaling early in

vertebrate history and maintained it, as evidenced by its impor-

tance in mammals, fish, and birds. Zebrafish PGCs, unlike those

in chicks and mice, thoroughly depend upon SDF-1a/CXCR4-

mediated guidance throughout all steps of migration (Knaut

et al., 2003; Stebler et al., 2004).

Muscle satellite cells have also exploited CXCR4 and SDF-1a

for long-distance migration during development. Recent work in

the chick embryo demonstrated that SDF-1a in the limb mesen-

chyme and brachial arches suffices as a target for satellite cell

precursors following their delamination from the dermomyo-

tome. In satellite cells, CXCR4 interacts genetically with Gab1,

an adaptor molecule involved in signal transduction via c-Met
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Table 1. Molecular Mechanisms Involved in Stem Cell Trafficking during Development

Mechanism PGCs HSCs Satellite cells

Involved in

homing

(blood to

tissue)?

Involved in

interstitial

navigation? References

Chemoattraction

c-Kit/KitL survival,

migration

(mouse, not

fish)

chemotaxis,

fetal liver

retention

(mouse not fish)

? maybe yes (Christensen et al., 2004;

Matsui et al., 1990; Mintz and

Russell, 1957; Parichy et al.,

1999; Runyan et al., 2006;

Yoder et al., 1997)

CXCR4/

SDF-1a

survival

(mouse),

migration

(mouse, fish)

homing to fetal

liver, BM

(mouse)

chemotaxis of

precursors to

limb, inhibits

differentiation

yes yes (Ara et al., 2003;

Christensen et al., 2004;

Knaut et al., 2003; Ma et al.,

1998; Molyneaux et al., 2003;

Nagasawa et al., 1996;

Vasyutina et al., 2005;

Zou et al., 1998)

Repulsion/Attraction

Ephrins ? ? EphA4-EphA5

mediate

avoidance

no yes (Swartz et al., 2001)

IFITM/Mil/

Fragilis

(Leu-13 in

lymphocytes)

IFITMs drive

PGCs into

endoderm;

PGC-PGC

interaction

(mouse)

? ? yes yes (Frey et al., 1997; Tanaka et al.,

2005; Yoshimizu et al., 2001)

Lipids Wunens:

guidance and

survival (fly);

mevalonate

pathway (fly)

S1P/Edg

receptors bind

SIP, LPA to

regulate

lymphocyte

migration

? maybe yes (Kunwar et al., 2006;

Saba, 2004)

Adhesion/Movement

Cadherins E-cadherin

downregulation

with onset of

migration

through

epithelia (fish,

mouse)

VE-cadherin

expressed by

committing

HSCs (mouse)

N-cadherin

retains satellite

progenitor

daughters in

dermomyotome

no yes (Bendel-Stenzel et al., 2000;

Fraser et al., 2002; Shimizu et al.,

2005; Taoudi et al., 2005;

Weidinger et al., 1999)

c-Met/HGF ? ? delamination

from

dermomyotome

no yes (Dietrich et al., 1999;

Epstein et al., 1996)

Integrins b1-integrin,

PGC homing

(mice)

CD41 expressed

on early HSCs

(mouse, fish);

b1-integrin essential

for fetal liver

and BM colonization

a6b1-integrin

involved in

migration to the

myotome

yes yes (Anderson et al., 1999; Bajanca

et al., 2006; Bertrand et al., 2005;

Potocnik et al., 2000)

Abbreviations: BM, bone marrow; HGF, hepatocyte growth factor; HSC, hematopoietic stem cell; IFITM, Interferon-inducible transmembrane recep-

tor, PGC, primordial germ cell; S1P, sphingosine-1-phosphate; SDF-1a, stromal derived factor-1a; question mark indicates lack of evidence of

involvement.
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(Vasyutina et al., 2005), which regulates the survival and dis-

persal of satellite cell precursors (Sachs et al., 2000). Down-

stream integration of CXCR4 and c-Met signaling pathways con-

trols both migration and survival of satellite cell precursors. In

light of these data, it will be interesting to dissect the molecular

crosstalk between GPCR and receptor tyrosine kinase signal

transduction in adult satellite cells and to ask whether these

pathways also converge in embryonic PGCs or HSCs. Curiously,

SDF-1a appears to be a relatively common stem cell guidance

cue and is used among multiple vertebrate classes and by all

three stem cells considered here. As we continue to compare

the development and migration of stem cells in additional organ-

isms, it may become clearer whether SDF-1a/CXCR4 represents

a primordial navigation system of vertebrates, upon which addi-

tional migratory pathways are layered, or whether among many

early migration mechanisms, SDF-1a/CXCR4 became a refined

evolutionary survivor.
Stem Cell Trafficking in Adult Tissues
As in development, stem cell homing and migration are critical

for the ongoing replacement of mature cells and regeneration

of damaged cells in many adult tissues. Stem cell function in

adult tissue repair and replacement often recapitulates the pro-

cesses that gave rise to these cells and enabled their dissemina-

tion during development. Thus, comparative analysis of devel-

opmental and regenerative stem cell function can help to

inform studies of the crucial signaling pathways that mediate

stem cell movement in the body.

Blood

In the adult hematopoietic system, multipotent clonogenic HSCs

give rise to billions of new mature blood cells each day (see Re-

view by S.H. Orkin and L.I. Zon). These cells replenish circulating

pools of red and white blood cells whose effector functions limit

their lifespan and necessitate their replacement from self-renew-

ing precursors. Migration and homing are thus key components

of normal adult hematopoiesis and are required for the dissem-

ination and function of mature blood cells throughout the body.

As discussed below, controlled migration appears to be a key

feature of normal HSC activity as well (Figure 2).

In adult mice and humans, the majority of HSCs are found in

the bone marrow, but HSCs are also constitutively present at

low levels in the circulation. Circulating HSCs have been

detected in the blood phenotypically and functionally, both by

direct transplantation of peripheral blood cells and by analysis

of parabiotic mice—animals surgically joined so that they share

a common blood circulation (Abkowitz et al., 2003; Massberg

et al., 2007; Wright et al., 2001). Significantly, parabiosis ex-

periments directly demonstrate that circulating HSCs rapidly

HSCs exit the blood in various peripheral organs where they spend�36 hr be-

fore entering the draining lymphatics in a manner that depends on sphingo-

sine-1-phosphate (S1P) and the S1P receptor. S1P level are high in the lymph

but very low in tissues due to degradation by S1P lyase. While in peripheral tis-

sues, HSCs can divide and differentiate, presumably to replenish tissue-resi-

dent myeloid cells. Exposure of tissue-resident HSCs to agonists for Toll-like

receptor (TLR) 2 or TLR4 markedly amplifies HSC differentiation along the my-

eloid lineage. Through this mechanism, migratory HSCs contribute to immune

surveillance by the innate immune system.
Figure 2. Migratory Routes of Adult HSCs

The majority of HSCs reside in the bone marrow where they undergo self-

renewal and give rise to differentiated hematopoietic cells; however, some

HSCs continuously leave the marrow and enter the blood. At the top, circulat-

ing HSCs can re-enter the marrow through sinusoids, which constitutively ex-

press trafficking molecules that support a unique multistep adhesion cascade

for HSC homing. Initially, free-flowing HSCs are tethered to the vessel by the

vascular selectins, E- and P-selectin, which bind to sialyl-Lewisx-like carboy-

drate ligands that are associated with PSGL-1 and CD44 on HSCs. Selectin

binding, together with engagement of endothelial VCAM-1 with the integrin

VLA-4 (a4ß1), mediates HSC rolling in marrow sinusoids. The rolling HSCs

are then activated by the chemokine CXCL12, which binds to the G protein-

coupled receptor, CXCR4. The chemokine signal is thought to induce a rapid

conformational change in the VLA-4 heterodimer (VLA-4*) that results in in-

creased affinity for VCAM-1 and permits the rolling cells to arrest. Adherent

HSCs then emigrate into the extravascular bone marrow compartment, pre-

sumably following extracellular chemoattractant signals transduced via G pro-

tein-coupled receptors expressed by HSCs. At the bottom, some blood-borne
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re-engraft the bone marrow at distinct locations and functionally

contribute to ongoing hematopoiesis (Abkowitz et al., 2003;

Wright et al., 2001). Moreover, HSC crossengraftment in parabi-

otic mice occurs in the absence of hematopoietic ablation and

does not involve surgery-induced inflammation (Wright et al.,

2001). These data suggest that blood circulation is a normal

physiological activity of HSCs.

Recently, the in vivo circuit of HSC recirculation has been fur-

ther explored in mice, revealing the remarkable journey of these

cells from the marrow into the blood, from the blood into multiple

tissues (including liver, kidneys, and lung), from the tissues into

the lymph, and from the lymph back into the blood, where they

may return to the marrow or enter another cycle of transit (Fig-

ure 2) (Massberg et al., 2007). Although the biological rationale

for this nomadic behavior is not entirely clear, one strong possi-

bility is that the constitutive circulation of HSCs through periph-

eral tissues provides a rapidly recruitable source for local pro-

duction of immune and inflammatory effector cells (Massberg

et al., 2007). Such effectors generated ‘‘on the spot’’ enable

fast and effective eradication of subthreshold infections, clean

up circumscribed regions of cell death, and replenish rare tis-

sue-resident leukocytes such as dendritic cells that are lost in

the course of infection. In addition, analysis of mutant mice lack-

ing the transcription factor early growth response 1 (Egr1) show

enhanced HSC proliferation in the bone marrow, coupled with

normal numbers of marrow HSCs and a constitutive increase

in peripheral blood HSCs (I.M. Min and A.J.W., unpublished

data). These findings suggest that regulated release of HSCs

into the circulation also may help to limit overaccumulation of

these cells in the marrow environment.

The efficiency with which HSCs re-engraft the marrow in un-

manipulated animals appears to depend directly on the availabil-

ity of open niches, which constantly turn over at a low rate (Bhat-

tacharya et al., 2006). In parabiotic mice, HSC chimerism can be

enhanced by hematoablative drugs and cytokines that induce

the movement of endogenous cells out of the marrow niche (Ab-

kowitz et al., 2003). Likewise, hematopoietic engraftment follow-

ing transplantation in unirradiated animals can be significantly

enhanced by antibody-mediated depletion of the recipient’s

endogenous pool of HSCs (Czechowicz et al., 2007). Ultimately,

understanding how constitutive recirculation affects HSC func-

tion must await strategies that specifically block this migration.

Nonetheless, the importance of HSC homing pathways is

made clear by the reliance of clinical bone-marrow transplanta-

tion on the innate ability of transplanted HSCs to traffic efficiently

to the bone-marrow niche.

Transplantation of human bone-marrow cells or peripheral

blood progenitor cells (PBPCs) is a common treatment option

for patients with hematopoietic and nonhematopoietic cancers,

bone-marrow failure, or certain metabolic disorders. During he-

matopoietic cell transplant, donor HSCs contained within mar-

row or peripheral blood grafts are introduced intravenously into

recipients whose own blood-forming capacity has been partially

or completely abrogated by irradiation or chemotherapy. To suc-

ceed in regenerating the recipient’s blood system, these HSCs

must accurately and efficiently home to appropriate marrow

locations and engraft within available niches that support HSC

survival, expansion, and differentiation to regenerate mature
620 Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc.
blood cells. This clinically important process of transplantation

is likely to use pre-existing pathways that normally support the

physiological recirculation of HSCs during steady-state hemato-

poiesis. Intravital microscopy studies in mouse bone marrow

have enabled the dissection of the multistep adhesion cascade

regulating hematopoietic stem and progenitor cell homing to

normal and irradiated bone marrow (Mazo et al., 1998, 2002)

and have implicated particular adhesion and chemotactic recep-

tors in this process (Table 2 and Figure 2).

In addition to blood-to-marrow homing, common clinical prac-

tice also exploits the reverse process of marrow-to-blood migra-

tion, a phenomenon known as ‘‘mobilization.’’ In fact, because

mobilization of HSCs into the circulation greatly facilitates their

collection for transplantation and appears to shorten the time re-

quired for recovery of normal levels of circulating blood cells in

some transplant recipients (Jansen et al., 2005), mobilized periph-

eral blood cellsare increasinglypreferredwhencompared toother

stem cell sources for adult transplantation (http://www.imbtr.org).

Like transplantation, HSC mobilization may use pre-existing

physiological migratory pathways. Mobilization can be induced

by a wide variety of ‘‘mobilizing’’ agents, including antagonists

of adhesion and chemotaxis, cytotoxic drugs, and certain

cytokines. Interestingly, these agents often drive both HSC pro-

liferation and movement from the marrow to the bloodstream

(Morrison et al., 1997; Papayannopoulou, 1999), suggesting

a mechanistic link between HSC cell-cycle progression and mi-

gration. In this regard, it is interesting to note that the homing ef-

ficiency of transplanted HSCs (from blood to marrow) is directly

impacted by the position of HSCs in the cell cycle. In several

studies, the ability of HSCs to functionally engraft irradiated re-

cipients dramatically decreases as soon as they exit quiescence

(Bowie et al., 2006; Passegue et al., 2005), although the explana-

tion for this reduced engraftment potential remains unclear.

Skeletal Muscle

Adult skeletal muscle possesses remarkable regenerative ca-

pacity, with large numbers of new muscle fibers forming only

a few days after acute muscle damage (Hawke and Garry,

2001). This rapid repair is believed to occur through the action

of myogenically specified precursor cells contained within the

population of satellite cells located immediately adjacent to

and beneath the basal lamina of muscle fibers (Mauro, 1961;

Figure 3). In response to muscle growth and regenerative cues,

normally quiescent satellite cells become activated and divide,

migrate, and differentiate to form myoblasts that fuse with

each other and with existing muscle fibers to regenerate the

muscle (reviewed in Hawke and Garry, 2001).

Satellite cell activation, migration, and fusion all contribute to

the maintenance and regeneration of muscle mass in normal

and pathological conditions. The migratory capacity of myogenic

satellite cells appears to be modulated by the integrity of the basal

lamina. After rupture of the basal lamina due to injury or disease,

satellite cells migrate to adjacent myofibers via tissue bridges

(Watt et al., 1987). With more limited muscle injury where no rup-

ture of the basal lamina occurs, satellitecells may traverse the my-

ofiber underneath the basal lamina to the injury site. The signals

that initiate satellite cell movement along and between damaged

myofibers, as well as the molecular mediators of their migration,

are not well understood. However, some myofiber-associated

http://www.imbtr.org


muscle stem cells contained within the satellite cell population

may possess unique migratory properties that allow their re-

engraftment into the satellite cell niche upon intramuscular trans-

plant (Collins et al., 2005; Montarras et al., 2005; Sherwood et al.,

2004). Re-entry into this niche after muscle damage allows

myogenic stem cells to repopulate and renew the stem cell com-

partment in the muscle, such that muscle regenerative activity is

maintained for subsequent rounds of injury repair.

Unlike HSCs, highly myogenic muscle satellite cells do not

appear to traffic naturally in the circulation, as no chimerism de-
velops in this population in parabiotic mice, even after many

months of shared circulation (Sherwood et al., 2004). Recruit-

ment of myogenic satellite cells from the circulation is also not in-

duced following muscle injury (Sherwood et al., 2004), suggest-

ing that these cells do not possess appropriate adhesion and

signaling receptors to support their movement into or out of

the bloodstream. Even within the muscle, myogenic precursors

exhibit relatively limited mobility, although they do appear capa-

ble of contributing to myofibers at some distance from their initial

site of activation within the muscle bed (Hughes and Blau, 1990).
Table 2. Molecular Mechanisms Involved in the Trafficking of Stem Cells in the Adult

Mechanism HSCs Satellite cells

Involved

in homing

(blood

to tissue)?

Involved in

interstitial

navigation?

Pathway also

utilized during

development? References

Deadhesion

MMPs cleaves KitL

to generate soluble

KitL; important

for mobilization and

hematopoietic recovery

involved in

myoblast

migration

indirectly yes yes (in flies) (Carmeli et al., 2004;

Heissig et al., 2002;

Kollet et al., 2006)

Cathepsin K Produced by osteoclasts;

cleaves KitL and SDF-1a

? yes yes ? (Kollet et al., 2006)

CD26 Cleaves SDF-1a;

involved in mobilization and

homing to BM

? yes no no (Christopherson et al., 2003)

Chemoattraction

c-Kit/KitL BM homing

and retention

? yes yes yes (Bernstein et al., 1991;

Fleming et al., 1993)

CXCR4/

SDF-1a

BM homing

and retention

myoblast

chemotaxis

yes yes yes (De Paepe et al., 2004;

Ma et al., 1998;

Nagasawa et al., 1996;

Petit et al., 2002;

Ratajczak et al., 2003;

Zou et al., 1998)

Rho GTPases Rac1, Rac2,

cdc42: HSC

retention in BM;

homing to BM

regulates

M-cadherin

expression

yes yes yes (Cancelas et al., 2005;

Charrasse et al., 2006;

Gu et al., 2003)

Lipids (S1P) HSC recirculation

from tissues into

lymph

S1P signaling

induces proliferation

and cell contraction

no yes yes (Formigli et al., 2004;

Massberg et al., 2007;

Nagata et al., 2006)

Adhesion/Movement

Cadherins N-cadherin adhesion

implicated in some

but not all studies

M-cadherin binds

satellite cells

to the myofiber

no yes yes (Irintchev et al., 1994;

Kiel et al., 2007;

Zhang et al., 2003)

c-Met/HGF activation of

satellite cells

no yes yes (Tatsumi et al., 1998)

Integrins b1-integrin

essential for BM

homing; BM retention

involved in myoblast

migration, adhesion

and fusion

yes yes yes (Papayannopoulou, 2000;

Potocnik et al., 2000;

Schwander et al., 2003;

Taverna et al., 1998)

Abbreviations: BM, bone marrow; HGF, hepatocyte growth factor; HSC, hematopoietic stem cell; MMP, matrix metalloproteinase; S1P, sphingosine-

1-phosphate; SDF-1a, stromal derived factor-1a; question mark indicates lack of evidence of involvement.
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Interestingly, other populations of cells that reportedly exhibit

myogenic activity in vivo—including blood vessel-associated

pericytes, mesangioblasts, and muscle side-population (SP)

cells—are able to engraft the muscle from the bloodstream

and to contribute to donor-engrafted muscle fibers following in-

tra-arterial (but not intravenous) delivery (reviewed in Peault

et al., 2007). The homing capacity of these alternative muscle re-

generative cells may in some instances be induced or enhanced

by cell culture (Galvez et al., 2006; Sampaolesi et al., 2003). Such

induced homing capacity may be an advantage for systemic

dissemination, but given the relatively poor myogenic activity

of these cells in comparison to canonical muscle satellite cells

(Collins et al., 2005; Montarras et al., 2005), and the potential

dangers (such as thrombosis) associated with intravascular cell

delivery, it is still unclear what constitutes the ‘‘best’’ population

for muscle cell therapy.

Trafficking Mechanisms of Adult Stem Cells
Taking blood and skeletal muscle as prototypical examples of

homeostatic (blood) and facultative (skeletal muscle) stem cell

populations, one can divide the events of physiological adult

stem cell movement into two distinct multistep processes. First,

because long-term maintenance of tissue-specific adult stem

cells typically requires association with a supportive stem cell

niche (see Review by S.J. Morrison and A.C. Spradling, page

598 of this issue), movement of these cells during the course

of steady-state or injury-induced replacement of mature daugh-

ter cells first requires stem cell mobilization from the niche. Yet,

to enable long-term stem cell maintenance, these mobilized cells

also must eventually return to the niche, in a process comple-
622 Cell 132, 612–630, February 22, 2008 ª2008 Elsevier Inc.
mentary to stem cell homing. Mobilization and return of stem

cells to the niche invoke similar, although not identical, molecular

processes involving adhesion/deadhesion, chemoattraction/

chemoretention, and ultimately stem cell movement. In addition,

they often use the same molecular mediators, illustrating the

functional complementarity of these processes. Interestingly,

while stem cell mobilization often evokes stem cell proliferation,

return to the niche is typically accompanied by a return to mitotic

quiescence (Hawke and Garry, 2001; Morrison et al., 1997;

Passegue et al., 2005; Zammit et al., 2004).

Adhesion and Deadhesion

In both blood and skeletal muscle, the molecular mechanisms

underlying stem cell movement have been most studied in set-

tings of induced responses to tissue injury (that is, chemotoxic

drug treatments, irradiation, and transplantation). However, it is

likely that factors involved in injury-induced stem cell mobiliza-

tion and homing likewise mediate steady-state physiological

movements, suggesting that these same pathways will almost

certainly have relevance for homeostatic stem cell functions as

well. In any event, stem cell movement in vivo begins with release

of the stem cell from its protective environment, or niche. In the

hematopoietic system, this appears to occur constitutively

(Massberg et al., 2007; Wright et al., 2001), whereas in skeletal

muscle, the liberation of myogenic satellite cells seems to occur

almost exclusively in response to muscle damage (Hawke and

Garry, 2001).

For HSCs, deadhesion from the niche involves the elaboration

of proteolytic enzymes by both bone marrow hematopoietic and

stromal elements; such enzymes include matrix metalloprotei-

nase MMP-9 and the cysteine protease cathepsin K (Heissig
Figure 3. Adhesion and Migration in Adult Skeletal Muscle

(A–D) Skeletal muscle is composed of bundles of multinucleated myofibers (A). Each fiber carries a rare population of primitive muscle satellite cells. Satellite cells

reside between the myofiber plasma membrane and the surrounding basal lamina, composed of collagen, laminin and other extracellular matrix-associated pro-

teins (B). When the muscle is injured, damaged muscle fibers and infiltrating blood cells (not shown) elaborate soluble mediators, such as SDF-1a, and satellite

cells become activated (C). Activated satellite cells proliferate and migrate along the myofiber (C) and through the muscle intersitium to adjacent myofibers (D) to

repair damage by fusion with surviving myofibers and by de novo myogenesis. Shown in (B)’s inset is the muscle satellite cell niche. Satellite cells adhere tightly to

myofibers, and M-cadherin concentrates in the region of cell-cell contact. Satellite cells also adhere to the laminin-containing extracellular matrix (black line) via

b1-integrin heterodimers, and express the chemokine receptor CXCR4 and Syndecan coreceptors. These trafficking molecules regulate satellite cell proliferation

and migration during muscle regeneration.



et al., 2002; Kollet et al., 2006). These enzymes act on extracel-

lular matrix proteins and secreted cytokines, including SDF-1a

and KitL (Kollet et al., 2006), both of which can modulate the

in vivo localization of HSCs and hematopoietic progenitors

(Fleming et al., 1993; Levesque et al., 2003). Recent data impli-

cate blood-lineage osteoclasts, bone-remodeling cells found of-

ten in the endosteal region of the marrow, in the release of HSCs

from their niche; direct cytokine stimulation of osteoclasts spe-

cifically increases circulating levels of hematopoietic precursors,

whereas in vivo inhibition of osteoclast activity reduces both the

physiological release and induced mobilization of hematopoietic

precursor cells (Kollet et al., 2006). The activity of proteases pro-

duced by HSCs themselves, such as the cell surface-expressed

dipeptidase CD26, also contributes to the silencing of HSC re-

tention signals in the marrow in part by cleavage-mediated inac-

tivation of SDF-1a (Christopherson et al., 2003). Activation of

protease activity likewise appears to regulate muscle satellite

cell function, and in vivo studies argue that MMP activity (likely

MMP-2, MT-MMP1, or MMP-9) is essential for the migration of

myogenic precursors during muscle regeneration (Carmeli

et al., 2004).

Based on expression studies, cadherin-mediated cell adhe-

sion has been suggested to facilitate HSC retention in the niche

(via N-cadherin) (Zhang et al., 2003) and to correctly position

muscle satellite cells along the muscle fiber (via M-cadherin)

(Irintchev et al., 1994). However, mice lacking M-cadherin

show no defects in skeletal muscle development or regeneration

(Hollnagel et al., 2002), and recent studies argue against the in-

volvement of N-cadherin in regulating HSCs (Kiel et al., 2007).

Thus, the precise role of cadherin-mediated binding in adhe-

sion/deadhesion of adult stem cells remains opaque, and it is

possible that other adhesion molecules, such as integrins,

support cadherin-like functions in adult tissues.

Satellite cells also express a number of other cell surface re-

ceptors implicated in cell-cell and cell-ECM adhesion, including

CD34, VCAM-1, NCAM, c-Met, syndecan-3, and syndecan-4

(reviewed in Peault et al., 2007 and Hawke and Garry, 2001). Al-

though in many cases the functional importance of these adhe-

sion receptors for satellite cell activation and myogenic function

remains obscure, analysis of relevant knockout mice suggests

that syndecans-3 and -4 are important for satellite cell-mediated

muscle regeneration. Syndecans are a family of cell surface-ex-

pressed heparin sulfate proteoglycans that act as coreceptors

for tyrosine kinases and play a role in cell adhesion. Mice lacking

syndecan-3 exhibit a progressive muscular dystrophy and aber-

rant in vitro differentiation of muscle satellite cells, whereas mice

lacking syndecan-4 show defects in muscle regeneration in vivo

and syndecan-4 null myocytes fail to proliferate properly when

cultured ex vivo (Cornelison et al., 2004). Nonetheless, normal

muscle morphogenesis in syndecan-knockout mice suggests

that these molecules are not critical for specification or migration

of myogenic precursors during development.

Chemoattraction/Chemoretention

Receipt of appropriate stem cell retention signals appears to be

essential for maintaining HSCs within the bone-marrow niche.

Like their fetal counterparts, adult HSCs express the chemokine

receptor CXCR4 and selectively respond to SDF-1a in chemo-

taxis assays in vitro (Wright et al., 2002). Administration of the
CXCR4 antagonist AMD3100 effectively mobilizes HSCs in

both mice and humans (Broxmeyer et al., 2005), and proteolytic

degradation of SDF-1a in the bone marrow has been associated

with induced mobilization of hematopoietic progenitor cells (Lev-

esque et al., 2003; Petit et al., 2002), although the necessity of

this degradation for mobilization has been questioned (Levesque

et al., 2004). Likewise, conditional ablation of CXCR4 in hemato-

poietic lineage cells results in loss of HSCs from the marrow

environment and reduced resistance to hematopoietic injury

(Sugiyama et al., 2006). Signaling downstream of CXCR4, via

the Rho family GTPases Rac1 and Rac2, also appears to be es-

sential for retention of HSCs in the marrow, as ubiquitous dele-

tion of both Rac1 and Rac2 or administration of small molecule

inhibitors of Rac proteins induces spontaneous mobilization of

HSCs and progenitors into the blood (Cancelas et al., 2005; Gu

et al., 2003). Interestingly, different chemotactic signals appear

to regulate the movement of HSCs out of tissues other than

the bone marrow. HSCs arrive in these peripheral organs via

the blood, but exit via the draining lymphatics in a manner that

depends on sphingosine-1-phosphate (S1P) and the S1P recep-

tor (Massberg et al., 2007). S1P levels are high in the lymph but

very low in tissues due to degradation by a S1P lyase (Figure 2C).

Thus, HSCs appear to respond to a gradient of S1P to exit pe-

ripheral tissues and enter the lymph, which enables their passive

transport and return to the blood via the thoracic duct.

Many of the same molecules that play a critical role in HSC

mobilization from the bone marrow have also been implicated

in the reverse process of HSC homing to the marrow from the

peripheral blood. For example, hematopoietic engraftment of

human HSCs in immunodeficient mice is blocked by inhibitory

antibodies to CXCR4 (Peled et al., 1999). Likewise, Rac1-defi-

cient mouse HSCs exhibit an impaired ability to migrate to the

marrow after transplant and, thus, are unable to effectively repo-

pulate recipient hematopoietic systems (Cancelas et al., 2005;

Gu et al., 2003). After arriving in the marrow, HSC engraftment

in the appropriate marrow location appears to depend addition-

ally on retention signals provided by divalent cations in the mi-

croenvironment. In particular, the Ca2+ sensing receptor is highly

expressed by HSCs, and transplanted HSCs that lack this recep-

tor home to marrow but show impaired lodgement in endosteal

niches (adjacent to the bone) (Adams et al., 2006). As a result

of their defective in vivo localization, HSCs lacking the Ca2+

sensing receptor ultimately fail to effectively engraft irradiated

recipients in competitive transplant assays (Adams et al., 2006).

Signaling via the CXCR4/SDF-1a axis also appears to be

involved in the action of myogenic precursor cells of adult skeletal

muscle. First, analysis of cell surface marker expression by skel-

etal muscle satellite cells (Sherwood et al., 2004) indicates that

a highly myogenic subset of these, which exhibit muscle stem

cell properties (M. Cerletti and A.J.W., unpublished data), can

be specifically enriched by expression of CXCR4. Therefore,

these cells likely respond directly to SDF-1a, consistent with re-

ports of SDF-1a upregulation in injured and regenerating skeletal

muscle (De Paepe et al., 2004) and chemotaxis of muscle satellite

cell lines in response to SDF-1a (Ratajczak et al., 2003). SDF-1a is

also involved in the migration of rat neural precursor cells and may

be important for attracting these cells to proliferate in the external

granule cell layer of the cerebellum in the brain (Reiss et al., 2002).
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Movement

As for HSC chemotaxis, HSC mobilization from the marrow and

homing to the marrow also appear to invoke an overlapping set

of cell surface-expressed adhesion receptors (Figure 2C). For

example, antibody-based inhibition of the integrin VLA-4 (a4b1)

or proteolytic degradation of its ligand VCAM-1 induces mobili-

zation of stem and progenitor cells in both mice and primates

(Levesque et al., 2001; Papayannopoulou, 2000). Conversely,

functional inhibition of VLA-4 during HSC transplant prevents

efficient hematopoietic reconstitution by blocking HSC homing

to the bone marrow and engraftment within the marrow niche

(Wagers et al., 2002). HSC homing from blood to marrow addi-

tionally invokes the activity of the endothelial adhesion mole-

cules, E- and/or P-selectin (Frenette et al., 1998; Mazo et al.,

1998).

As in the movement of HSCs, integrin-mediated cell adhesion

and migration is also essential for proper muscle repair by myo-

genic satellite cells. During the later stages of muscle regenera-

tion, interaction between the remodeled extracellular matrix and

integrins expressed by satellite cells facilitates the adhesion and

spreading of muscle precursors and thus establishes the organi-

zation of the regenerated muscle fibers (Disatnik and Rando,

1999; Zaidel-Bar et al., 2004). In addition, conditional inactivation

of the b1-integrin chain, a marker of highly myogenic stem cells

within the satellite cell population (Kuang et al., 2007; Sherwood

et al., 2004), in developing skeletal muscle leads to an accumu-

lation of unfused cells and a decrease in muscle fibers in mutant

muscles (Schwander et al., 2003).

In summary, drawing from examples in both the blood and

skeletal muscle, it is clear that a complex cascade of adhesive,

chemotactic, and signaling pathways acts cooperatively and in

concert to bring about the relocation of stem cells in the adult

organism. Moreover, many of the molecules and mediators sup-

porting stem cell migration and homing in adult tissues are

shared with migration systems utilized during embryogenesis,

suggesting a close conservation of the regenerative responses

of adult tissue stem cells and the organogenic activities of em-

bryonic and fetal precursors (Tables 1 and 2). Thus, the regulated

mobilization and homing of tissue-specific stem cells is crucial

for proper function of these cells in tissue homeostasis and

repair.

Stem Cell Trafficking and Disease
As a final parallel, we consider the role of stem cell homing in the

pathological activities of tumor-propagating cancer stem cells,

which like their normal counterparts, may rely on regulated adhe-

sion and migration to disseminate malignant clones exhibiting

a hierarchy of (dysregulated) cell differentiation. We also discuss

potential new strategies to exploit stem cell homing as a vehicle

for drug or gene delivery.

Cancer, Cancer Stem Cells, and Metastasis

An abnormal increase in progenitor cell frequency in the blood-

stream often correlates with neoplastic transformation. Like

normal hematopoietic cell migration, the trafficking of cancer

cells into and through the bloodstream relies on the expression

of specific cell adhesion and chemotactic factors. Migration

through the bloodstream allows dissemination of metastatic

cells in both hematopoietic and solid tumors, and in both cases,
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specific adhesion/deadhesion pathways appear to determine

the efficiency of egress from the primary tumor site and the tro-

pism of the metastatic cells. For example, in a mouse model of

melanoma, ectopic expression of integrin a4b1 is sufficient to re-

tain tumors in situ (Qian et al., 1994), whereas in a distinct mouse

insulinoma model, transgenic expression of the homing receptor

L-selectin (CD62L) is sufficient to direct metastasis to peripheral

lymph nodes (Qian et al., 2001). Finally, expression of chemokine

receptors, particularly CXCR4, has been associated with traf-

ficking and enhanced metastasis in several blood and solid

tumors including leukemia, lymphoma, multiple myeloma, breast

cancer, ovarian cancer, prostate cancer, renal cell carcinoma,

melanoma, and non-small-cell lung cancer (reviewed in Balkwill,

2004 and Burger and Kipps, 2006).

These data support the notion that neoplastic progenitor cells

take advantage of the same or similar mechanisms of migration

as those normally used by their nonmalignant counterparts and

by differentiated leukocytes. But do these mechanisms truly

reflect the in vivo movement of tumor propagating cancer stem

cells, and can they be targeted effectively to delay or impair

reseeding of malignancy at distant sites? In fact, current data

from a number of model systems lend increasing support to

the notion that many, although perhaps not all, malignancies

have at their root a rare population of cancer stem cells, which

maintains production of more differentiated malignant blasts

and is capable of transferring disease to otherwise normal sec-

ondary recipients (reviewed in Dalerba et al., 2007). Recent

work further suggests that marrow-derived non-neoplastic cells

may be necessary to form a ‘‘premetastatic niche’’ that directs

the organ-specific homing patterns of malignant carcinoma cells

(Kaplan et al., 2005). This premetastatic niche possesses unique

extracellular matrix properties and secretes chemoattractants,

such as SDF-1a, to recruit metastatic cancer stem cells to estab-

lish secondary tumors at distal sites (Kaplan et al., 2005). Impor-

tantly, interventions that prevent the establishment of this niche

appear also to block in vivo metastasis, suggesting that targeting

the homing mechanisms of malignant cells may be an effective

strategy for limiting cancer spread.

Consistent with this notion that mobilization of malignant can-

cer stem cells is important in the establishment of metastatic tu-

mors, studies in a xenograft model of acute myelogenous leuke-

mia (AML) indicate that inhibition of leukemia stem cell (LSC)

migration to a putative leukemic niche by blockade of CD44-

dependent adhesion prevents leukemic engraftment (Jin et al.,

2006). Thus, interference with tumor cell migration could be

used to prevent or delay leukemic progression and cancer

spread. Conversely, because acquisition by cancer stem cells

of new adhesion receptor expression or function may confer

metastatic potential upon some tumors (Balkwill, 2004; Qian

et al., 1994, 2001), migration receptor expression profiling could

prove useful as a diagnostic and prognostic tool. These data

argue in favor of conserved mechanisms of cell deadhesion,

chemotaxis, migration, and homing in the dissemination of nor-

mal stem cells and of their malignant counterparts.

Stem Cells as Delivery Vehicles

The innate homing capacity of HSCs has been exploited clini-

cally in the repopulation of blood cells via bone-marrow trans-

plant. Intravascular transplant methods have also been explored



for cell-replacement therapy involving skeletal muscle precur-

sors and mesenchymal stem cells, although in many cases these

cell populations have exhibited limited efficiency for engraftment

in target organs (reviewed in Peault et al., 2007). The study of

in vivo stem cell homing and migration has taught us that traffick-

ing patterns differ between stem cell lineages, and are strongly

influenced by the normal interactions between these cells and

their niches during development and in the adult. Thus, stem

cells should not be considered as broadly acting ‘‘heat-seeking

missiles’’ that are capable of specifically searching out and tar-

geting diseased or dysfunctional tissues. Nevertheless, a deeper

knowledge of the natural migratory properties of stem cells and

of the ways in which stem cell trafficking patterns can be manip-

ulated may reveal new ways to exploit their unique properties.

For example, because stem cells possess extensive self-

renewal capacity, they represent particularly attractive delivery

vehicles for drug or gene therapy because they would allow

long-term production of disease modulators and ongoing re-

placement of missing or defective gene products. In fact, recent

studies in a mouse xenotransplant model of human glioma pro-

vide some support for this notion. In these studies, intracranially

injected mouse neural precursor cells showed the surprising

ability to migrate from the contralateral hemisphere of the brain

to primary and secondary glioma foci. The targeted migration

of these cells was exploited to deliver cytotoxic tumor therapy,

thereby reducing tumor growth (Shah et al., 2005). The analo-

gous capacity of hematopoietic and muscle stem cells to

home through the circulation or to navigate within the tissue

interstitium to target distinct niches within the body raises the in-

triguing possibility that these cells may likewise be useful as drug

or gene-delivery vectors.

Conclusions and Perspective
Just how critical is interstitial migration and blood-to-tissue hom-

ing for the specification of stem cells in the embryo, for the re-

placement and repair of adult tissues, and for the maintenance

and spread of tumor-propagating cancer stem cells? On a prac-

tical level, the establishment of new cell lineages and coordina-

tion of organogenesis during development requires mechanical

separation of precursors from surrounding cells. For example,

to seed muscle formation and satellite cell pools at distant sites

throughout the body, embryonic myogenic precursors must first

delaminate from their original site of specification in the dermo-

myotome (Buckingham et al., 2003) and migrate to new loca-

tions. Relocation to a new environment also may permit nascent

or maturing stem cells to receive appropriate induction signals or

may shield them from inappropriate signals. For example, mouse

PGC precursors make a brief detour to extraembryonic regions,

and embryological studies demonstrate that this sojourn is re-

quired for establishment of the PGC lineage (Snow, 1981). Re-

cent work proposes a molecular mechanism for this shielding,

demonstrating that induction of the transcriptional repressor

Blimp1 in these extraembryonic mouse PGCs prevents the ex-

pression of genes that would otherwise activate a somatic cell

differentiation program (Ohinata et al., 2005). The next important

question to answer will be how the extraembryonic niche regu-

lates Blimp1 in PGCs to prevent the activation of default somatic

differentiation programs. In any event, such observations argue
that the development of some stem cells cannot be completed

in a single niche and that signals gleaned from multiple microen-

vironments must be integrated over time. Recent advances in

stem cell isolation and visualization in situ and in forward genet-

ics will facilitate the identification and study of mutant flies, fish,

and mice with defects in anatomically discrete aspects of stem

cell migration. These tools will enable formal testing in multiple

tissue systems of the relationship between stem cell function

and stem cell migration and homing during development.

Is there something unique about the migration and homing of

stem cells? Extensive migration during development and in adult

life is a property of many cells, including stem cells, progenitors,

and differentiated cells. In fact, not one of the molecular mecha-

nisms discussed here operates exclusively in stem cells; on the

contrary, stem cells appear to home and migrate by mechanisms

common to many itinerant cells, including mature leukocytes

and neural crest and endothelial cells. If in fact there are no par-

ticular molecules that function exclusively in the adhesion,

movement, and navigation of stem cells, then perhaps the spe-

cific routes traveled by stem cells are patterned and timed

more subtly, through the expression of particular combinations

of trafficking molecules or by integration of migratory cues with

other stem cell signaling pathways. Nonetheless, while stem

cell trafficking may not invoke molecular mechanisms unique

to stem cells, our consideration of the movement of HSCs,

PGCs, and satellite cells does reveal intriguing commonalities,

including utilization of the SDF-1a/CXCR4 chemotaxis pathway

and linkage of stem cell proliferation and movement, which ap-

pear to be shared in developing and adult tissues by all of these

migrating stem cell populations.

Among the examples we have considered, chemotactic sig-

naling via the SDF-1a/CXCR4 axis stands alone as a broadly

conserved migration mechanism that acts in stem cell move-

ments in multiple tissues in both the embryo and adult. During

development, SDF-1a/CXCR4 signals direct the homing of fetal

mouse HSCs to the liver and marrow (Ma et al., 1998; Nagasawa

et al., 1996; Zou et al., 1998), guide fish and mouse PGCs toward

the gonadal ridge (Ara et al., 2003; Molyneaux et al., 2003), and

help to target mouse myogenic precursor cells as they migrate

from the dermomyotome (Vasyutina et al., 2005). In the adult,

SDF-1a and CXCR4 regulate the mobilization of mouse and hu-

man HSCs into the peripheral blood as well as their re-entry into

the marrow (Broxmeyer et al., 2005; Peled et al., 1999; Sugiyama

et al., 2006), and facilitate skeletal muscle regeneration (De

Paepe et al., 2004; Ratajczak et al., 2003). This chemotactic

pathway also functions in the dissemination of tumor-forming

cells in a large number of metastatic cancers (Balkwill, 2004).

The remarkable ubiquity of SDF-1a/CXCR4 signaling in regulat-

ing a diverse array of stem cells in a diversity of contexts certainly

begs the question of whether this pathway may have some

unique or stem cell-specific functions. Yet SDF-1a/CXCR4 sig-

nals also regulate several processes apparently unrelated to

stem cell activity, including the normal trafficking of lymphocyte

precursors and mature hematopoietic cells, migration of cere-

bellar neurons, and cardiogenesis (reviewed in Burger and

Kipps, 2006). In any event, our understanding of this pathway

in stem cell regulation is as yet incomplete; for example, it re-

mains to be determined whether the recently identified second
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receptor for SDF-1a, CXCR7 likewise regulates multiple stem

cell types (although a lack of overt hematopoietic phenotypes

in mice conditionally lacking this receptor argues against a cru-

cial role for CXCR7 in HSCs (Sierro et al., 2007). Further charac-

terization of both the upstream and downstream components of

the SDF-1a/CXCR4 pathway may highlight important differ-

ences between cell lineages or identify aspects unique to stem

cells. A broader understanding of SDF-1a/CXCR4 molecular

regulation and response circuitry may shed new light on how

this particular chemokine pathway may have become so impor-

tant for the trafficking of multiple types of stem cells in develop-

ment, disease, and regeneration.

In addition to frequent use of SDF-1a/CXCR4 signaling, a sec-

ond common aspect of the movement of stem cells in the

embryo and adult appears to be coordination of migration with

regulation of stem cell numbers (Hawke and Garry, 2001; Morri-

son et al., 1997; Zammit et al., 2004). For example, during devel-

opment, HSCs switch from a state of rapid proliferation to a state

of relative quiescence soon after homing to the bone marrow

(Bowie et al., 2006). For PGCs, the connection between prolifer-

ation and migration is implied by the growing list of genes that act

in both processes: c-Kit/KitL (Runyan et al., 2006), SDF-1a/

CXCR4 (Ara et al., 2003; Molyneaux et al., 2003), and zebrafish

Dead end (Kunwar et al., 2006). Misregulation of proliferation

or migration of any of these stem cell types may have dire biolog-

ical consequences, such as anemia, myopathy, infertility, and

cancer. For example, in the germline, aberrant PGC regulation

can give rise to extragonadal tumors derived from vagrant

PGCs (Runyan et al., 2006), and the prevention of germline can-

cers necessitates additional control of cell survival during the

migration of PGCs. In mice, PGCs that fail to migrate not only

fail to proliferate but are actively deleted by apoptosis pathways

involving the proapoptosis protein Bax (Runyan et al., 2006) or

other mechanisms such as the Wunen pathway in flies (reviewed

in Kunwar et al., 2006). In the adult, direct analysis of HSC move-

ment in vivo corroborates a mechanistic link between HSC

cell-cycle progression and migration. HSC-mobilizing agents

often simultaneously enhance stem cell proliferation and migra-

tion into the blood (Morrison et al., 1997). Furthermore, recent

analysis of mice lacking the transcription factor Egr1 demon-

strates a direct molecular link between HSC proliferation and in

vivo localization, both of which are perturbed in Egr1-deficient

HSCs (I.M. Min and A.J.W., unpublished data). The reverse pro-

cesses of homing and bone-marrow engraftment of transplanted

HSCs also appear to be linked to cell-cycle status, as dividing

HSCs exhibit compromised bone-marrow homing and long-

term hematopoietic reconstituting capacities (Bowie et al.,

2006; Passegue et al., 2005). Finally, in skeletal muscle, activation

of satellite cells following muscle injury induces both their prolifer-

ation and their migration to damaged regions of the same or

adjacent muscle fibers, whereas, conversely, re-entry into

the satellite cell niche is associated with a return to mitotic quies-

cence (Hawke and Garry, 2001; Zammit et al., 2004). These

examples from several different systems reveal a coordination

of stem cell proliferation and migration, which may enable ‘‘sys-

tem-wide’’ maintenance of appropriate stem cell numbers and

limit stem cell expansion to only the appropriate locations and

contexts.
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Further perspective on how and why stem cells migrate will

likely come from studies in a diversity of model organisms. As

discussed here, many insights have been gleaned from both

vertebrate and nonvertebrate systems. In addition, stem cell

movement both in development and in adult tissues during main-

tenance and repair appears to be evolutionarily conserved. In-

deed, ascidians—a phylogenetic intermediate between inverte-

brates and vertebrates—offer a unique perspective on stem

cell homing. Colonial ascidians such as B. schlosseri are com-

prised of successively regenerating clonal individuals and main-

tain lineages of stem cells to build bodies and to make gametes.

Although their origins during the organism’s adult life remain

opaque, these somatic stem cells and germline stem cells mi-

grate from old to new bodies to carry out normal colony regener-

ation. Like other homing stem cells, they transit through the

vasculature and may reside in multiple niches; however, B.

schlosseri stem cells also invade and colonize the bodies and

gonads of other genetically distinct colonies (Laird et al., 2005).

Thus, in this example, stem cell homing provides a mechanism

not only for homeostatic regeneration but also for evolutionary

competitiveness by enabling parasitization of the gonads of

others to expand reproductive capacity. Although little is cur-

rently known regarding the molecular mechanisms that control

stem cell homing and engraftment in B. schlosseri, ongoing ge-

nomic analyses have identified homologs of many key mamma-

lian adhesion proteins including selectins, integrins, ICAMs, and

NCAMs (A. De Tomaso, personal communication), suggesting

evolutionary conservation of the mediators of stem cell migration

and engraftment in this organism. Recent studies suggest that

stem cell competition also occurs in a more commonly studied

model organism, the fruit fly Drosophila melanogaster, where it

appears that a major determinant of the ‘‘competitiveness’’ of

germline stem cells (GSCs)—that is, their success in being main-

tained in the ovary—relates to their expression of cadherin re-

ceptors, which allow them to maintain contact with their niche.

Fly GSCs that express higher levels of cadherin adhere better

to supportive niche cells (called cap cells), as indicated by an ex-

panded area of contact between cadherinhi GSCs and cap cells.

Indeed, cadherinhi GSCs can actually expel less competitive

cadherinlo GSCs from the niche and replace them via symmetric

self-renewing division (Jin et al., 2008). Whether similar adhe-

sion-based competition helps to determine ‘‘winners’’ and

‘‘losers’’ in the B. schlosseri gonad will be an important question

to address. Elucidating the molecular basis of what appears to

be a high-stakes stem cell homing competition in colonial ascid-

ians as well as fly ovaries will likely provide unique insights into

how and why stem cells home.

What do we gain from understanding stem cell migration? The

migration and homing of adult HSCs has been tremendously

useful in the clinical application of these cells in bone-marrow

transplantation. Revealing the importance of HSC movement

and the role of distinct niches in specifying their function during

development and in adulthood will likely enable their improved

therapeutic application. The study of stem cell migration may

also catalyze ongoing efforts to derive specialized precursor

cells from pluripotent embryonic stem cells or induced pluripo-

tent stem (iPS) cells, particularly as sequential exposure to

multiple distinct microenvironments during stem cell homing or



interstitial migration appears to be commonly required for appro-

priate stem cell specification and maturation. A deeper under-

standing of the migratory activity of PGCs, HSCs, satellite cells,

and other stem and progenitor cell populations will likely accel-

erate progress towards exploiting these cells for regenerative

medicine. Finally, an improved capacity to control stem cell

migration will have important implications for drug delivery and

anticancer therapies, perhaps enabling highly specific interven-

tions to promote endogenous function or to ablate cancer stem

cells. Through continuing comparative analysis of stem cell

movement in a variety of model systems and organs, we un-

doubtedly will uncover additional critical mechanisms governing

the decisions of these dynamic cells to migrate or to home to dis-

tant sites in the body, and these insights will be translated into

new tools for regenerative medicine and anticancer therapy.
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